Part Number Hot Search : 
MB351 SMAJ78A F4002 MSR127R PE4201 TLP3063F MUR30 ON0883
Product Description
Full Text Search
 

To Download ADA4528-2ARMZ-RL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  pre cision, ultralow noise, rrio, zero - drift op amp data sheet ada4528 - 1 / ada4528 - 2 rev. d document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 ? 2011 C 2013 analog devices, inc. all rights reserved. technical support www.analog.com features low offset voltage : 2.5 v maximum low offset voltage drift: 0.015 v/c maximum low noise 5.6 nv/hz at f = 1 khz, a v = +100 97 nv p - p at f = 0.1 hz to 10 hz, a v = +100 open - loop gain: 130 db minimum cmrr: 135 db minimum psrr: 130 db minimum unit y-g ain crossover : 4 mhz gain bandwidth product: 3 mhz at a v = + 100 ?3 db closed - loop bandwidth: 6.2 mhz single -s upply operation: 2.2 v to 5.5 v dual - supp ly operati on: 1.1 v to 2.75 v rail - to - rail input and output unity - gain stable applications thermoco uple/thermopile load cell and bridge transducer s precision instrumentation electronic scales medical instrumentation handheld test equipment general description the ada4528 -1 / ada4528 -2 are ultralow noise, zero - drift operat ional am plifier s featuring rail - to - rail input and output swing. with an offset voltage of 2.5 v, offset voltage drift of 0.015 v/c, and typical noise of 97 nv p - p (0.1 hz to 10 hz, a v = +100), the ada4528 -1 / ada4528 -2 are well suited for applicati ons in which err or sources cannot be tolerated. the ada4528 -1 / ada4528 -2 have a wide operating supply range of 2. 2 v to 5.5 v, high gain, and excellent cmrr and psrr specifications , which make it ideal for applications that require precision amplification of low level signals, such as position and pressure sensors, strain gages, and medical instrumentation. the ada4528 -1 / ada4528 -2 are specified over the extended industrial temperature range (?40c to +125c). the ada4528 -1 and ada4528 -2 are available in 8 - lead msop and 8- lead lfcsp packages . for more information about the ada4528 -1 / ada4528 -2 , see the an - 1114 application note , lowest noise zero - drift amplifier has 5.6 nv/hz voltage noise density . pin connection diagr ams nic 1 ?in 2 +in 3 v? 4 nic 8 v+ 7 out 6 nic 5 notes 1. nic = no interna l connection. ada4528-1 top view (not to scale) 09437-001 figure 1. ada4528 -1 pin configuration, 8- lead msop 09437-102 ada4528-1 top view (not to scale) 3 +in 4v? 1 nic 2 ?in 6 out 5 nic 8 nic 7 v+ notes 1. nic = no internal connection. 2. connect the exposed pad to v? or leave it unconnected. figure 2 . ada4528 -1 pin configuration, 8- lead lfcs p for ada4528 -2 pin con nec tion s and for more information about the pin connections for these products, see the pin configurations and function descriptions secti on. 1 10 100 1 10 100 1k 10k 100k 1m 10m volt age noise densit y (nv/hz) frequenc y (hz) 09437-063 v sy = 5v v cm = v sy /2 a v = 1 figure 3. voltage noise density vs. frequency table 1 . analog devices, inc ., zero - drift op amp portfolio 1 type ultralow noise micropower (<20 a) low power (<1 ma) 16 v operating voltage 30 v operating voltage single ada4528 -1 ada4051 -1 ad8628 ad8638 ada4638 -1 ad8538 dual ada4528 -2 ada4051 -2 ad8629 ad8639 ad8539 quad ad8630 1 see www.analog. com for the latest selection of zero - drift operational amplifiers.
important links for the ada4528-1_4528-2 * last content update 05/12/2013 10:50 pm parametric selection tables ad8628 , ad8629 , ad8630 : available in single, dual, and quad channel counts offering lower supply current and input bias current in a zero-drift precision op amp. ad8538 and ad8539 : available in single and dual channel versions offering lower supply current in a zero-drift precision op amp. ad8551 , ad8552 , ad8554 : available in single, dual, and quad channel versions offering lower supply current in a zero-drift precision op amp. ad8571 and ad8572 : available in single and dual channel versions offering lower supply current in a zero-drift precision op amp. find similar products by operating parameters documentation an-1114: lowest noise zero-drift amplifier has 5.6 nv/hz voltage noise density an-940: low noise amplifier selection guide for optimal noise performance cn-0216: precision weigh scale design using the ad7791 24-bit sigma-delta adc with external ada4528-1 zero-drift amplifiers ada4528: lowest noise, zero-drift amplifier enabling 24-bit resolution (video) op amp applications handbook ms-2066: low noise signal conditioning for sensor-based circuits visit the ada4528-1/4528-2 product page for practical analog design techniques and more documentation. design tools, models, drivers & software opamp error budget calculator adisimopamp? analog bridge wizard ada4528 spice macro model evaluation kits & symbols & footprints view the evaluation boards and kits page for documentation and purchasing symbols and footprints product recommendations & reference designs cn-0216: precision weigh scale design using the ad7791 24-bit sigma-delta adc with external ada4528-1 zero-drift amplifiers design collaboration community collaborate online with the adi support team and other designers about select adi products. follow us on twitter: www.twitter.com/adi_news like us on facebook: www.facebook.com/analogdevicesinc design support submit your support request here: linear and data converters embedded processing and dsp telephone our customer interaction centers toll free: americas: 1-800-262-5643 europe: 00800-266-822-82 china: 4006-100-006 india: 1800-419-0108 russia: 8-800-555-45-90 quality and reliability lead(pb)-free data sample & buy ada4528-1_4528-2 view price & packaging request evaluation board request samples check inventory & purchase find local distributors * this page was dynamically generated by analog devices, inc. and inserted into this data sheet. note: dynamic changes to the content on this page (labeled 'important links') does not constitute a change to the revision number of the product data sheet. this content may be frequently modified. powered by tcpdf (www.tcpdf.org)
ada4528- 1/ada4528 - 2 data sheet rev. d | page 2 of 28 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 general des cription ......................................................................... 1 pin connection diagrams ............................................................... 1 revision history ............................................................................... 2 specific ations ..................................................................................... 3 electrical characteristics 2.5 v operation ............................ 3 electrical characteristics 5 v operation ................................ 5 absolute maximum ratings ............................................................ 7 thermal resistance ...................................................................... 7 esd caution .................................................................................. 7 pin configurations and function descriptions ............................8 typical performance characteristics ........................................... 10 application s information .............................................................. 20 input protection ......................................................................... 20 rail - to - rail input and output .................................................. 20 noise considerations ................................................................. 20 comparator operation .............................................................. 22 printed circuit board layout ................................................... 23 outline dimensions ....................................................................... 24 ordering guide .......................................................................... 25 revision history 5 /13 rev. c to rev. d added 8 - l ead lfcsp p ackage ( cp - 8 - 11) ....................... universal changes t o table 5 ............................................................................ 7 added figure 7, renumbered sequentially .................................. 8 added figure 62 and figure 63 ..................................................... 19 changes to comparator operation section, figure 68, figure 69, figure 70, and figure 71 .............................................. 21 changes to figure 72 ...................................................................... 22 added figure 76 .............................................................................. 24 9/12 rev. b to rev. c changes to features section ............................................................ 1 added comparator operation section ....................................... 21 added figure 65 to figure 69; renumbered sequentially ........ 21 7/12 rev. a to rev. b added ada4528 - 2 ............................................................. universal changes to features section, figure 1, figure 2, and table 1 .... 1 added pin connection diagrams section and figure 3 ; renumbered sequentially ................................................................ 1 changes to table 2 ............................................................................ 3 changes to table 3 ............................................................................ 5 change to endnote 1 of table 4 and thermal resistance section ................................................................................................ 7 added pin configurations and function descriptions s ection , figure 4, figure 5, and table 6 ........................................................ 8 added figure 6 and table 7 ............................................................. 9 changes to input protection section ........................................... 19 change s to source resistance section and caption of figure 63 ....................................................................... 20 changes to residual voltage ripple section and caption of figure 64 ....................................................................... 2 1 changes to ordering guide .......................................................... 22 9 /11 rev. 0 to rev. a added 8 - lead lfcsp_wd package ................................ universal changes to general description section ...................................... 1 added figure 2; renumbered sequentially ................................... 1 change s to offset voltage, offset voltage drift, power supply rejection ratio, and settl ing time to 0.1% parameters, table 2 ... 3 changes to thermal resistance section and table 5 ................... 5 changes to figure 41 and figure 44 ............................................ 1 2 chang es to figure 45 and figure 48 ............................................ 13 updated outline dimensions ....................................................... 18 changes to ordering guide .......................................................... 18 1/11 revision 0: initial vers ion
data sheet ada4528- 1/ada4528 - 2 rev. d | page 3 of 28 specifications electrical character istics 2.5 v operation v sy = 2.5 v, v cm = v sy /2 , t a = 25c, unless otherwise specified. table 2 . parameter symbol test conditions/comments min typ max unit input characteristics of fset voltage v os v cm = 0 v to 2.5 v 0.3 2.5 v ? 40c t a +125c , msop package 4 v ? 40c t a +125c , lfcsp package 4.3 v offset voltage drift v os /t ? 40c t a +125c , msop package 0.002 0.015 v/c ? 40c t a +125c , lfcsp pack age 0.018 v/c input bias current i b 220 400 pa ? 40c t a +125c 600 pa input offset current i os 440 800 pa ? 40c t a +125c 1 na input voltage range 0 2.5 v common - mode rejection ratio cmrr v cm = 0 v to 2.5 v 135 158 db ? 40c t a +125c 116 db open - loop gain a vo r l = 10 k?, v o = 0.1 v to 2.4 v 130 140 db ? 40c t a +125c 126 db ada4528 -1 r l = 2 k?, v o = 0.1 v to 2 .4 v 125 132 db ? 40c t a +125c 1 21 db ada4528 -2 r l = 2 k?, v o = 0.1 v to 2.4 v 122 132 db ? 40c t a +125c 119 db input resistance differential mode r indm 225 k? common mode r incm 1 g? input capacitance differential mode c indm 15 pf common mode c incm 30 pf output characteristics output voltage high v oh r l = 10 k? to v cm 2.49 2.495 v ? 40c t a +125c 2.485 v r l = 2 k? to v cm 2.46 2.48 v ? 40c t a +125c 2.44 v output voltage low v ol r l = 10 k? to v cm 5 10 mv ? 40c t a +125c 15 mv r l = 2 k? to v cm 20 40 mv ? 40c t a +125c 60 mv short - circu it current i sc 30 ma closed - loop output impedance z out f = 1 khz, a v = +10 0.1 ? power supply power supply rejection ratio psrr v sy = 2.2 v to 5.5 v 130 150 db ? 40c t a +125c 127 db supply current per amplifier i sy i o = 0 ma 1.4 1.7 ma ? 40c t a +125c 2.1 ma dynamic performance slew rate sr r l = 10 k?, c l = 100 pf, a v = +1 0.45 v/s settling time to 0.1% t s v in = 1.5 v step, r l = 10 k?, c l = 100 pf, a v = ?1 7 s unity - gain crossover ugc v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +1 4 mhz phase margin m v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +1 57 degrees gain bandwidth product gbp v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +100 3 mhz ? 3 db closed - loop bandwidth f ? 3db v in = 10 mv p - p , r l = 10 k?, c l = 100 pf, a v = +1 6.2 mhz overload recovery time r l = 10 k?, c l = 100 pf, a v = ?10 50 s
ada4528- 1/ada4528 - 2 data sheet rev. d | page 4 of 28 parameter symbol test conditions/comments min typ max unit noise performance voltage noise e n p - p f = 0.1 hz to 10 hz, a v = +100 97 nv p - p voltage noise density e n f = 1 khz, a v = +100 5.6 n v/hz f = 1 khz, a v = +100, v cm = 2.0 v 5.5 nv/hz current noise i n p - p f = 0.1 hz to 10 hz, a v = +100 10 pa p- p current noise density i n f = 1 khz, a v = +100 0.7 pa/hz
data sheet ada4528- 1/ada4528 - 2 rev. d | page 5 of 28 electrical characteristics 5 v operatio n v sy = 5 v, v cm = v sy /2 , t a = 25 c, unless otherwise specified. table 3 . parameter symbol test conditions/comments min typ max unit input characteristics offset voltage v os v cm = 0 v to 5 v 0.3 2.5 v ? 40c t a +125 c 4 v offset voltage drift v os /t ? 40c t a +125c 0.002 0.015 v/c input bias current i b ada4528 -1 90 200 pa ? 40c t a +125c 3 00 pa ada4528 -2 125 250 pa ? 40c t a +125c 350 pa input offset current i os ada4528 - 1 180 400 pa ? 40c t a +125c 500 pa ada4528 -2 250 500 pa ? 40c t a +125c 600 pa input voltage range 0 5 v common - mode rejection ratio cmrr v cm = 0 v to 5 v 137 160 db ? 40c t a +125c 122 db open - loop gain a vo r l = 10 k?, v o = 0.1 v to 4.9 v 127 139 db ? 40c t a +125c 125 db r l = 2 k?, v o = 0.1 v to 4.9 v 121 131 db ? 40c t a +125c 120 db input resistance differential mode r indm 190 k? common mode r incm 1 g? input capacitance differential mode c indm 16.5 pf common mode c incm 33 pf output characte ristics output voltage high v oh r l = 10 k? to v cm 4.99 4.995 v ? 40c t a +125c 4.98 v r l = 2 k? to v cm 4.96 4.98 v ? 40c t a +125c 4.94 v output voltage low v ol r l = 10 k? to v cm 5 10 mv ? 40c t a +125c 20 mv r l = 2 k? to v cm 20 40 mv ? 40c t a +125c 60 mv short - circuit current i sc 40 ma closed - loop output impedance z out f = 1 khz, a v = +10 0.1 ? power supply power supply rejection ratio psrr v sy = 2.2 v to 5.5 v 130 150 db ? 40c t a +125c 127 db supply current per amplifier i sy i o = 0 ma 1.5 1.8 ma ? 40c t a +125c 2.2 ma dynamic performance slew rate sr r l = 10 k?, c l = 100 pf, a v = +1 0.5 v/s settling time to 0.1% t s v in = 4 v step, r l = 10 k?, c l = 100 p f, a v = ?1 10 s unity - gain crossover ugc v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +1 4 mhz phase margin m v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +1 57 degrees gain bandwidth product gbp v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +100 3.4 mhz ? 3 db closed - loop bandwidth f ? 3db v in = 10 mv p - p, r l = 10 k?, c l = 100 pf, a v = +1 6.5 mhz overload recovery time r l = 10 k?, c l = 100 pf, a v = ?10 50 s
ada4528- 1/ada4528 - 2 data sheet rev. d | page 6 of 28 parameter symbol test conditions/comments min typ max unit noise performance voltage noise e n p - p f = 0.1 hz to 10 hz, a v = +100 99 nv p - p voltage noise density e n f = 1 khz, a v = +100 5.9 nv/hz f = 1 khz, a v = +100, v cm = 4.5 v 5.3 nv/hz current noise i n p - p f = 0.1 hz to 10 hz, a v = +100 10 pa p- p current noise density i n f = 1 khz, a v = +100 0.5 pa/hz
data sheet ada4528- 1/ada4528 - 2 rev. d | page 7 of 28 absolu te maximum ratings table 4 . parameter rating supply voltage 6 v input voltage v sy 0.3 v input current 1 10 ma differential input voltage v sy output short - circuit duration to gnd indefinite storage temperature range ? 65 c to +150 c operating temperature range ? 40 c to +125 c junction temperature range ? 65c to +150c lead temperature (soldering, 60 sec) 300 c 1 the input pins have clamp diodes to the power supply pins. limit the input current to 10 ma or less whenever input signals exceed the power supply rail by 0. 3 v. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions abo ve those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal resistance ja is specified for the worst - case conditions, that is, a device soldered in a circuit board for surface - mount packages using a 4 - layer jedec board . the exposed pad of the lfcsp package is soldered to the board . table 5 . thermal re sistance package type ja jc unit 8 - lead msop (rm-8) 142 45 c/w 8 - lead lfcsp (cp -8 -12) 80 60 1 c/w 8 - lead lfcsp (cp -8 -11) 83.5 48.5 1 c/w 1 jc is measured on the top surface of the package. esd caution
ada4528-1/ada4528-2 data sheet rev. d | page 8 of 28 pin configuration s and function descr iptions nic 1 ?in 2 +in 3 v? 4 nic 8 v+ 7 out 6 nic 5 notes 1. nic = no interna l connection. ada4528-1 top view (not to scale) 09437-001 figure 4. ada4528 -1 pin configuration , 8- lead msop 09437-102 ada4528-1 top view (not to scale) 3 +in 4v? 1 nic 2 ?in 6 out 5 nic 8 nic 7 v+ notes 1. nic = no internal connection. 2. connect the exposed pad to v? or leave it unconnected. figure 5. ada4528 -1 pin configuration , 8- lead lfcsp table 6. ada4528 -1 pin functi on descriptions pin no. mnemonic description 1 , 5, 8 nic no interna l connect i on . 2 ? in inverting input . 3 +in noninverting input . 4 v? negative supply voltage . 6 out output . 7 v+ positive supply voltage . epad exposed pad (lfcsp only). c onnect the e xposed pad to v? or le ave it unconnected .
data sheet ada4528-1/ada4528-2 rev. d | page 9 of 28 out a 1 ?in a 2 +in a 3 v? 4 v+ 8 out b 7 ?in b 6 +in b 5 ada4528-2 top view (not to scale) 09437-103 figure 6. ada4528 -2 pin configuration , 8- le a d msop 09437-107 ada4528-2 top view (not to scale) 3 +in a 4v? 1 out a 2 ?in a 6 ?in b 5 +in b 8 v+ 7 out b notes 1. connect the exposed p ad to v? or le a ve it unconnected. figure 7. ada4528 -2 pin configuration, 8 - lead lfcsp table 7. ada4528 -2 pin function descriptions pin no. mnemonic description 1 out a output , channel a. 2 ? in a inverting input , channel a . 3 +in a noninverting input , channel a . 4 v? negative supply voltage . 5 +in b noninverting input , channel b . 6 ? in b inverting input , channel b . 7 out b output, channel b. 8 v+ positive supply voltage . epad connect the exposed pad to v - or leave it unconnected.
ada4528- 1/ada4528 - 2 data sheet rev. d | page 10 of 28 typical performance characteristics t a = 25 c, unless otherwise noted. 100 90 80 70 60 50 40 30 20 10 0 ?1.0 ?0.6 0 0.6 1.0 number of amplifiers v os (v) ?0.8 ?0.4 0.2 ?0.2 0.4 0.8 09437-002 v sy = 2.5v v cm = v sy /2 figure 8 . input offset voltage distribution 0 10 20 30 40 50 60 0 9 6 3 12 15 number of amplifiers tcv os (nv/c) v sy = 2.5v v cm = v sy /2 09437-003 figure 9 . input offset voltage d rift distribution 1.0 0.8 0.6 0.4 0 ?0.4 ?0.8 ?1.0 0 0.5 2.5 v os (v) v cm (v) 0.2 ?0.2 ?0.6 1.5 1.0 2.0 09437-004 v sy = 2.5v figure 10 . input offset voltage vs. common - mode voltage 100 90 80 70 60 50 40 30 20 10 0 number of amplifiers ?1.0 ?0.6 0 0.6 1.0 v os (v) ?0.8 ?0.4 0.2 ?0.2 0.4 0.8 09437-005 v sy = 5v v cm = v sy /2 figure 11 . input offset voltage distribution 0 9 6 3 12 15 tcv os (nv/c) 0 10 20 30 40 50 60 number of amplifiers v sy = 5v v cm = v sy /2 09437-006 figure 12 . input offset voltage drift distribution 1.0 0.8 0.6 0.4 0 ?0.4 ?0.8 ?1.0 0 1 5 0.2 ?0.2 ?0.6 3 2 4 09437-007 v sy = 5v v os (v) v cm (v) figure 13 . input offset voltage vs. common - mode voltage
data sheet ada4528- 1/ada4528 - 2 rev. d | page 11 of 28 ?400 ?300 ?100 ?200 0 200 300 100 400 ?50 ?25 0 25 50 75 100 125 i b (pa) temper a ture (c) i b + i b ? 09437-008 v sy = 2.5v v cm = v sy /2 figure 14 . input bias current vs. temperature ?600 ?400 ?200 0 200 400 600 0 0.5 1.0 1.5 2.0 2.5 i b (pa) v cm (v) +25c +125c +85c ?40c v sy = 2.5v 09437-009 figure 15 . input bias current vs. common - mode voltage 0.001 100 0.01 0.1 1 10 load current (ma) v sy = 2.5v ?40c +25c +85c +125c 10 1 100m 10m 1m 0.1m output voltage (v ol ) to supply rail (v) 09437-014 figure 16 . output voltage (v ol ) to supply rail vs. load current ?400 ?300 ?100 ?200 0 200 300 100 400 ?50 ?25 0 25 50 75 100 125 i b (pa) temper a ture (c) i b + i b ? 09437- 1 10 v sy = 5v v cm = v sy /2 figure 17 . input bias current vs. temperature ?800 ?600 ?400 ?200 0 200 400 600 0 1 2 3 4 5 i b (pa) v cm (v) +125c v sy = 5v 09437-012 +25c +85c ?40c figure 18 . input bias current vs. common - mode voltage 0.001 100 0.01 0.1 1 10 load current (ma) v s = 5v ?40c +25c +85c +125c 10 1 100m 10m 1m 0.1m output voltage (v ol ) to supply rail (v) 09437-017 figure 19 . output voltage (v ol ) to supply rail vs. load current
ada4528- 1/ada4528 - 2 data sheet rev. d | page 12 of 28 10 1 100m 10m 1m 0.1m 0.001 100 0.01 output voltage (v oh ) to supply rail (v) 0.1 1 10 load current (ma) v sy = 2.5v ?40c +25c +85c +125c 09437-010 figure 20 . output voltage (v oh ) to supply rail vs. load current 0 5 10 15 20 25 ?50 ?25 0 25 50 75 100 125 output vo lt age (v ol ) t o supp l y rai l (mv) temper a ture (c) r l = 2k? r l = 10k? 09437-016 v sy = 2.5v figure 21 . output voltage (v ol ) to supply rail vs. tempera ture 0 5 10 15 20 25 ?50 ?25 0 25 50 75 100 125 output vo lt age (v oh ) t o supp l y rai l (mv) temper a ture (c) r l = 2k? v sy = 2.5v r l = 10k? 09437-015 figure 22 . output voltage (v oh ) to supply rail vs. temperature 0.001 100 0.01 0.1 1 10 load current (ma) v sy = 5v ?40c +25c +85c +125c 10 1 100m 10m 1m 0.1m output voltage (v oh ) to supply rail (v) 09437-013 figure 23 . output voltage (v oh ) to supply rail vs. load current 0 5 10 15 20 25 30 35 40 45 output voltage (v ol ) to supply rail (mv) r l = 2k? r l = 10k? ?50 ?25 0 25 50 75 100 125 temper a ture (c) v sy = 5v 09437-019 figure 24 . output voltage (v ol ) to su pply rail vs. temperature 0 5 10 15 20 25 ?50 ?25 0 25 50 75 100 125 output vo lt age (v oh ) t o supp l y rai l (mv) temper a ture (c) r l = 2k? v sy = 5v r l = 10k? 09437- 1 17 figure 25 . output voltage (v oh ) to supply rail vs. temperature
data sheet ada4528- 1/ada4528 - 2 rev. d | page 13 of 28 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 i sy per amplifier (ma) v sy (v) +125c ?40c +85c +25c 09437-021 figure 26 . supply current vs. supply voltage ?90 ?45 0 45 90 135 ?30 0 30 60 90 120 1k 10k 100k 1m 10m phase (degrees) open-loo p gain (db) frequenc y (hz) v sy = 2.5v r l = 10k? c l = 100pf 09437-022 phase gain figure 27 . open - loop gain and phase vs. frequency ?20 ?10 0 10 20 30 40 50 60 10 100 1k 10k 100k 1m 10m closed-loo p gain (db) frequenc y (hz) a v = 100 v sy = 2.5v a v = 10 a v = 1 09437-026 figure 28 . closed - loop gain vs. frequency 1.0 1.2 1.4 1.6 1.8 2.0 ?50 ?25 0 25 50 75 100 125 i sy per amplifier (ma) temper a ture (c) v s y = 5.0v v s y = 2.5v 09437-024 figure 29 . supply current vs. temperature ?90 ?45 0 45 90 135 ?30 0 30 60 90 120 1k 10k 100k 1m 10m phase (degrees) open-loo p gain (db) frequenc y (hz) v sy = 5v r l = 10k? c l = 100pf 09437-025 phase gain figure 30 . open - loop gain and phase vs. frequency ?20 ?10 0 10 20 30 40 50 60 10 100 1k 10k 100k 1m 10m closed-loo p gain (db) frequenc y (hz) a v = 100 v sy = 5v a v = 10 a v = 1 09437-029 figure 31 . closed - loop gain vs. frequency
ada4528- 1/ada4528 - 2 data sheet rev. d | page 14 of 28 0 20 40 60 80 100 120 140 160 100 1k 10k 100k 1m 10m cmrr (db) frequenc y (hz) v sy = 2.5v v cm = v sy /2 v cm = 1.1v 09437-126 figure 32 . cmrr vs. frequency ?20 0 20 40 60 80 100 120 100 1k 10k 100k 1m 10m psrr (db) frequenc y (hz) psrr+ psrr? 09437-032 v sy = 2.5v figure 33 . psrr vs. f requency 0.001 0.01 0.1 1 10 100 1k 100 1k 10k 100k 1m 10m z out (?) frequenc y (hz) a v = 100 v sy = 2.5v a v = 10 a v = 1 09437-027 figur e 34 . closed - loop o utput impedance vs. frequency 0 20 40 60 80 100 120 140 100 1k 10k 100k 1m 10m cmrr (db) frequenc y (hz) v sy = 5v v cm = v sy /2 09437-031 figure 35 . cmrr vs. frequency ?20 0 20 40 60 80 100 120 100 1k 10k 100k 1m 10m psrr (db) frequenc y (hz) psrr+ psrr? 09437-035 v sy = 5v figure 36 . psrr vs. frequency 100 1k 10k 100k 1m 10m frequenc y (hz) a v = 100 v sy = 5v a v = 10 a v = 1 09437-030 z out (?) 0.001 0.01 0.1 1 10 100 1k figure 37 . closed - loop out put impedance vs. frequency
data sheet ada4528- 1/ada4528 - 2 rev. d | page 15 of 28 time (20s/div) vo lt age (0.5v/div) v sy = 1.25v v in = 2v p-p a v = 1 r l = 10k? c l = 100pf 09437-034 figure 38 . large signal transi ent response time (1s/div) vo lt age (50mv/div) v sy = 1.25v v in = 100mv p-p a v = 1 r l = 10k? c l = 100pf 09437-038 figure 39 . small signal transient response 0 2 4 6 8 10 12 14 16 1 10 100 1000 overshoot (%) load ca p aci t ance (pf) os+ os? v sy = 2.5v v in = 100mv p-p a v = 1 r l = 10k? 09437-033 figure 40 . small signal overshoot vs. load capacitance time (20s/div) vo lt age (1v/div) v sy = 2.5v v in = 4v p-p a v = 1 r l = 10k? c l = 100pf 09437-037 figure 41 . large signal transient response time (1s/div) vo lt age (50mv/div) v sy = 2.5v v in = 100mv p-p a v = 1 r l = 10k? c l = 100pf 09437-041 figure 42 . small signal transient response 0 2 4 6 8 10 12 14 16 1 10 100 1000 overshoot (%) load ca p aci t ance (pf) os+ os? v sy = 5v v in = 100mv p-p a v = 1 r l = 10k? 09437-036 figure 43 . small signal overshoot vs. load capacitance
ada4528- 1/ada4528 - 2 data sheet rev. d | page 16 of 28 time (10s/div) 0.5 0 ?0.5 input vo lt age (v) ?1 0 1 2 output vo lt age (v) v sy = 1.25v a v = ?10 v in = 187.5mv r l = 10k? c l = 100pf 09437-040 input output figure 44 . positive overload recovery time (10s/div) 0.5 0 ?0.5 input vo lt age (v) ?2 ?1 0 1 output vo lt age (v) v s y = 1.25v a v = ?10 v in = 187.5mv r l = 10k? c l = 100pf 09437-039 input output figure 45 . negative overload recovery 09437-044 time (10s/div) voltage (1v/div) v sy = 2.5v r l = 10k? c l = 100pf dut a v = ?1 input +7.5mv 0 ?7.5mv output error band post gain = 5 figure 46 . positive settling time to 0.1% time (10s/div) 0.5 0 ?0.5 input vo lt age (v) ?1 0 1 2 3 output vo lt age (v) v sy = 2.5v a v = ?10 v in = 375mv r l = 10k? c l = 100pf 09437-043 input output figure 47 . positive overload recovery time (10s/div) 0.5 0 ?0.5 input vo lt age (v) ?3 ?2 ?1 0 1 output vo lt age (v) v sy = 2.5v a v = ?10 v in = 375mv r l = 10k? c l = 100pf 09437-042 input output figure 48 . negative overload recovery 09437-047 time (10s/div) voltage (2v/div) v sy = 5v r l = 10k? c l = 100pf dut a v = ?1 input +20mv 0 ?20mv output error band post gain = 5 figure 49 . positive settling time to 0.1%
data sheet ada4528- 1/ada4528 - 2 rev. d | page 17 of 28 09437-045 time (10s/div) voltage (1v/div) v sy = 2.5v r l = 10k? c l = 100pf dut a v = ?1 input output +7.5mv 0 ?7.5mv error band post gain = 5 figure 50 . negative settling time to 0.1% 1 10 100 1 10 100 1k 10k vo lt age noise densit y (nv/hz) frequenc y (hz) v sy = 2.5v a v = 100 v cm = v sy /2 09437-046 figure 51 . voltage noise density vs. frequency 0.1 1 10 1 10 100 1k 10k 100k current noise densit y (pa/hz) frequenc y (hz) v sy = 2.5v v cm = v sy /2 a v = 100 09437-150 figure 52 . current noise density vs. freq uency 09437-048 time (10s/div) voltage (2v/div) v sy = 5v r l = 10k? c l = 100pf dut a v = ?1 input +20mv 0 ?20mv output error band post gain = 5 figure 53 . negative settling time to 0.1% 1 10 100 1 10 100 1k 10k vo lt age noise densit y (nv/hz) frequenc y (hz) v sy = 5v a v = 100 v cm = v sy /2 09437-049 figure 54 . voltage noise density vs. frequency 0.1 1 10 1 10 100 1k 10k 100k current noise densit y (pa/hz) frequenc y (hz) v sy = 5v v cm = v sy /2 a v = 100 09437-153 figure 55 . current noise density vs. frequency
ada4528- 1/ada4528 - 2 data sheet rev. d | page 18 of 28 time (1s/div) input vo lt age (20nv/div) 09437-050 v sy = 2.5v v cm = v sy /2 a v = 100 figure 56 . 0.1 hz to 10 hz noise 0.001 0.01 0.1 10 1 0.001 0.01 0.1 1 10 thd + n (%) amplitude (v p-p) v sy = 2.5v a v = 1 f = 1khz r l = 10k? 09437-152 figure 57 . thd + n vs. amplitude 0.001 0.01 0.1 1 10 100 1k 10k 100k thd + n (%) frequenc y (hz) 09437-056 v sy = 2.5v a v = 1 r l = 10k? 80khz low-pass filter v in = 2v p-p figure 58 . thd + n vs. frequency time (1s/div) input vo lt age (20nv/div) 09437-053 v sy = 5v v cm = v sy /2 a v = 100 figure 59 . 0.1 hz to 10 hz noise 0.001 0.01 0.1 10 1 0.001 0.01 0.1 1 10 thd + n (%) amplitude (v p-p) v sy = 5v f = 1khz r l = 10k? 09437-155 a v = 1 figure 60 . thd + n vs. amplitude 0.001 0.01 0.1 1 10 100 1k 10k 100k thd + n (%) frequenc y (hz) 09437-057 v sy = 5v a v = 1 r l = 10k? 80khz low-pass filter v in = 2v p-p figure 61 . thd + n vs. frequency
data sheet ada4528- 1/ada4528 - 2 rev. d | page 19 of 28 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 100 1k 10k 100k channe l seper a tion (db) frequenc y (hz) v in = 0 . 5 v p -p v in = 1 v p -p v in = 1 . 2 v p -p v sy = 2 . 5 v r l = 2 k? a v = ? 10 0 09437-262 figure 62 . channel separation vs. frequency ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 100 1k 10k 100k channe l seper a tion (db) frequenc y (hz) v in = 1v p -p v in = 2v p -p v in = 2.4 v p -p v sy = 5 v r l = 2 k? a v = ? 10 0 09437-263 figure 63 .channel separation vs. frequency
ada4528- 1/ada4528 - 2 data sheet rev. d | page 20 of 28 applications infor mation the ada4528 - 1 / ada4528 - 2 are precision, ultralow noise, zero - drift opera tional amplifier s that feature a patented chop - ping technique. this chopping technique offers ultralow input offset voltage of 0.3 v typical and inpu t offset voltage drift of 0.002 v/ c typical. offset voltage error s due to common - mode voltage swings and power supply variations are als o corrected by the cho pping tech nique, resulting in a typical cmrr figure of 158 db and a psrr figure of 150 db at 2.5 v supply voltage. the ada4528 - 1 / ada4528 - 2 have low broadband noise of 5.6 nv/hz (at f = 1 khz, a v = +100, and v sy = 2.5 v) with no 1/f noise component. these features are ideal for amplification of low level signals in dc or subhertz high precision applications. for more information about the chopper architecture of the ada4528 - 1 / ada4528 - 2 , see the an - 1114 application note , lowest noise zero - drift amplifier has 5.6 nv/hz voltage noise density . input protection the ada4528 - 1 / ada4528 - 2 have internal esd protection diodes that are connected between the inputs and each supply rail. these diodes protect the input transistors in the event of electrostatic dis charge and are reverse biased during normal operation. this protection scheme allo ws voltages as high as approximately 300 mv beyond the rails to be applied at the input of either terminal without causing permanent damage (see table 4 in the absolute maxi mum ratings section ). when either input exceeds one of the supply rails by more than 300 mv, the esd diodes become forward biased and large amounts of current begin to flow through them. without current limiting, this excessive fault current causes perman ent damage to the device. if the inputs will be subject ed to overvoltage conditions, insert a resistor in series with each input t o limit the input current to 10 ma maximum. however, consider the resistor thermal nois e effect on the entire circuit. for exa mple, a t a 5 v supply voltage, the broadband voltage noise of the ada4528 - 1 / ada4528 - 2 is approximately 6 nv/hz (at unity gain) . a 1 k? resistor has thermal noise of 4 nv/hz. a dding a 1 k? resistor at the noninverting input pin increases the total nois e by 30% root sum square (rss). rail - to - rail input and outpu t the ada4528 - 1 / ada4528 - 2 feature rail - to - rail input and output with a supply voltage from 2.2 v to 5.5 v. figure 64 s hows the input and output waveforms of the ada4528- 1 / ada4528 - 2 configured as a unity - gain buffer w ith a supply v oltage of 2.5 v and a resistive load of 10 k?. with an input voltage of 2.5 v, the ada4528 - 1 / ada4528 - 2 allow t he output to swing very close to both rails. additionally, the parts do not exhibit phase reversal. 3 2 1 0 ?1 ?2 ?3 voltage (v) time (200s/div) v in v out v sy = 2.5v a v = 1 r l = 10k? 09437-059 figure 64 . rail - to- rail input and output noise considerations for more information about the noise characteristics of the ada4528 - 1 / ada4528 - 2 , see the an - 1114 application n ote , lowest noise zero - drift amplifier has 5.6 nv/hz voltage noise density . 1/f noise 1/f noise, also known as pink noise or flicker noise, is inherent in semiconductor devices and increases as frequency decreases. at low frequency, 1/f noise is a major noise contributor and causes a significant output voltage offset when amplified by the noise gain of the circuit. however, the ada4528 - 1 / ada4528 - 2 eliminate the 1/f noise internally, thus making these parts an excellent choice for dc or subhertz high precision appli cations. the 0.1 hz to 10 hz am plifier voltage noise is only 97 nv p - p (a v = +100) at a supply voltage of 2.5 v. the low frequency 1/f noise , which appears as a slow varying offset to the ada4528 - 1 / ada4528 - 2 , is gr eatly reduced by the chopping technique. this reduction in 1/f noise allows the ada4528 - 1 / ada4528 - 2 to have muc h lower noise at dc and low frequency compared to standard low noise amplifiers that are susceptible to 1/f noise. figure 51 and figure 54 show the voltage noise density of the amplifier with no 1/f noise.
data sheet ada4528- 1/ada4528 - 2 rev. d | page 21 of 28 source resistance w ith 5.6 nv/hz of broadband noise at 1 khz (v sy = 2.5 v and a v = +100) , the ada4528 - 1 / ada4528 - 2 are among the l owest noise zero - drift amplifiers currently available in the industry. therefore, it is important to carefully select the input source resistance to maintain a total low noise. the total input referred broadband noise (e n total) from any amplifier is prima rily a function of three types of noise: input voltage noise, input current noise, and thermal (johnson) noi se from the external resistors. these uncorrelated noise sources can be summed up in a root sum squared (rss) manner using the following equation: e n total = [ e n 2 + 4 ktr s + ( i n r s ) 2 ] 1/2 where: e n is the input voltage noise of the amplifier (v/hz). k is the boltzmanns constant (1.38 10 ? 23 j/k). t is the temperature in kelvin (k). r s is the total input source resistance (?). i n is the input curre nt noise of the amplifier (a/hz). the total equivalent rms noise over a specific bandwidth is expressed as e n , rms = e n total bw where bw is the bandwidth in hertz. this analysis is valid for broadband noise calculation. if the bandwidth of concern incl udes the chopping frequency, more complicated calculations must be made to include the effect of the noise energy spectrum at the chopping frequency (see the residual voltage ripple section ). with a low source resistance of r s < 1 k?, the voltage noise of the amplifier dominates. as source resistance increases, the thermal noise of r s dominates. as the source resistance increases further , where r s > 100 k?, the current noise becomes the main contributor to the total input noise. a good selection table for low noise op amps can be found in the an - 940 application note , low noise amplifier selection guide for optimal noise performance . voltage noise density with different gain configurations figure 65 shows the voltage noise density vs. closed - loop gain of a zero - drift amplifier from a leading c ompetitor. the voltage noise density of the amplifier increases from 11 n v/hz to 21 nv/hz as the closed - loop gain decreases from 1000 to 1. 24 20 16 12 8 4 0 1 10 100 1000 09437-061 volt age noise densit y (nv/hz) closed-loop gain (v/v) v sy = 5v f = 100hz competitor a figure 65 . competitor a: voltage noi se density vs. closed - loop gain figure 66 shows the voltage noise density vs. freq uency of the ada4528 - 1 / ada4528 - 2 for three different gain configurations. the ada4528 - 1 / ada4528 - 2 offer a constant input voltage noise density of 6 nv/hz to 7 nv/hz, regardless of the gain configuration. 1 10 100 1 10 100 1k 10k volt age noise densit y (nv/hz) frequenc y (hz) a v = 10 a v = 100 a v = 1 v sy = 5v v cm = v sy /2 09437-062 figure 66 . volt age noise density vs. frequency with different gain configurations
ada4528-1/ada4528-2 data sheet rev. d | page 22 of 26 residual voltage ripple although autocorrection feedback (acfb) suppresses the chop- ping related voltage ripple, higher noise spectrum exists at the chopping frequency and its harmonics due to the remaining ripple. figure 67 shows the voltage noise density of the ada4528-1 / ada4528-2 configured in unity gain. a noise energy spectrum of 50 nv/hz can be seen at the chopping frequency of 200 khz. this noise energy spectrum is significant when the op amp has a closed-loop frequency that is higher than the chopping frequency. 1 10 100 1 10 100 1k 10k 100k 1m 10m voltage noise density (nv/ hz) f r e q u e n c y ( h z ) 09437-063 v sy = 5 v v cm = v sy / 2 a v = 1 figure 67. voltage noise density vs. frequency to further suppress the noise at the chopping frequency, it is recommended that a post filter be placed at the output of the amplifier. for more information about residual voltage ripple, see the an-1114 application note , lowest noise zero-drift amplifier has 5.6 nv/hz voltage noise density . comparator operation figure 68 shows the ada4528-2 configured as a voltage follower with an input voltage that is always kept at midpoint of the power supplies. the same configuration is applied to the unused channel. a1 and a2 indicate the placement of ammeters to measure supply current. as shown in figure 69, as expected, in normal operating condition, i sy + = i sy ? = 3 ma for the dual ada4528-2 at 5 v of supplies. a1 1k? 1k? i sy + + v sy v out ?v sy i sy ? a2 ada4528-2 1/2 09437-065 figure 68. voltage follower 09437-066 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 i sy per du a lamplifier (ma) v sy (v) figure 69. supply current vs. supply voltage (voltage follower) figure 70 and figure 71 show the ada4528-2 configured as comparators, with 1k resistors in series with the input pins. figure 72 shows the supply currents for both configurations. supply currents increase slightly to 3.2 ma per dual amplifier at 5 v of supplies. v out a1 1k ? 1k ? i sy + + v sy ?v sy i sy ? a2 ada4528-2 1/2 09437-067 figure 70. comparator a v out a1 1k? 1k ? i sy + + v sy ?v sy i sy ? a2 ada4528-2 1/2 09437-068 figure 71. comparator b
data sheet ada4528- 1/ada4528 - 2 rev. d | page 23 of 28 09437-069 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 i sy per dua l amplifier (ma) v sy (v) figure 72 . supply current vs. supply voltage (comparator a and comparator b) for more details on op amps as comparators, refer to the an - 849 application note , using op amps as comparators . printed circuit board layout the ada4528 - 1 / ada4528 - 2 are high precision device s with ultralow offset voltage and noise. therefore, care must be taken in the design of the printed circuit board (pcb) layout to achieve the optimum performance of the ada4528 - 1 / ada4528 - 2 at board level. to avoid leakage currents, keep the surface of the board clean and free of moisture. coating the board surface creates a barrier to moisture accumulation and reduces parasitic resistance on the board. to minimize power supply disturbances caused by output current variation , properly bypass the power supplies and keep the supply traces short . connect bypass capacitors as close as possi ble to the device supply pins. stray capacitances are a concern at the outputs and the inputs of the amplifier. it is recommended that signal traces be kept at a distance of at least 5 mm from supply lines to minimize coupling. a potential source of offset error is the seebeck voltage on the circuit board. the seebeck voltage occurs at the junction of two dissimilar metals and is a function of the temperature of the junction. the most common metallic junctions on a circuit board are solder - to - board trace an d solder - to - component lead. figure 73 shows a cross section of a surface - mount component soldered to a pcb. a variation in temperature across the board (where t a1 t a2 ) causes a mismatch in the seebeck voltages a t the solder joints, thereby resulting in thermal voltage errors that degrade the ultralow offset voltage per formance of the ada4528 - 1 / ada4528 - 2 . solder + + + + component lead copper trace v sc1 v ts1 t a1 surface-mount component pc board t a2 v sc2 v ts2 if t a1 t a2 , then v ts1 + v sc1 v ts2 + v sc2 09437-154 figure 73 . mismatch in seebeck voltages causes seebeck voltage error to minimize these thermocouple effects, orient resistors so that heat sources warm both ends equally. where possible, the in put signal paths should contain matching numbers and types of com - ponents to match the number and type of thermocouple junctions. for example, dummy components, such as zero value resistors, can be used to match the thermoelectric error source (real resist ors in the opposite input path). place matching com p onents in close proximity and orient them in the same manner to ensure equal seebeck voltages, thus canceling thermal errors. additionally, use leads of equal length to keep thermal conduction in equilibr ium. keep heat sources on the pcb as far away from the amplifier input circuitry as practical. it is highly recommended that a ground plane be used . a ground plane helps to distribute heat throughout the board, maintains a constant temperature across the b o ard, and reduces emi noise pick up.
ada4528- 1/ada4528 - 2 data sheet rev. d | page 24 of 28 outline dimensions c o m p l i a n t t o j e d e c s t a n d a r d s m o - 1 8 7 - a a 6 0 0 . 8 0 0 . 5 5 0 . 4 0 4 8 1 5 0 . 6 5 b s c 0 . 4 0 0 . 2 5 1 . 1 0 m a x 3 . 2 0 3 . 0 0 2 . 8 0 c o p l a n a r i t y 0 . 1 0 0 . 2 3 0 . 0 9 3 . 2 0 3 . 0 0 2 . 8 0 5 . 1 5 4 . 9 0 4 . 6 5 p i n 1 i d e n t i f i e r 1 5 m a x 0 . 9 5 0 . 8 5 0 . 7 5 0 . 1 5 0 . 0 5 1 0 - 0 7 - 2 0 0 9 - b figure 74 . 8 - lead mini small outline package [msop] (rm - 8) dimensions shown in millimeters t o p view 8 1 5 4 0.30 0.25 0.20 bottom view pin 1 index are a se a ting plane 0.80 0.75 0.70 1.70 1.60 sq 1.50 0.203 ref 0.05 max 0.02 nom 0.50 bsc exposed pa d 3.10 3.00 sq 2.90 for proper connection of the exposed pad, refer to the pin configuration and function descriptions section of this data sheet. coplanarity 0.08 0.50 0.40 0.30 compliant to jedec standards mo-229-weed 07-06-20 1 1- a pin 1 indic a t or (r 0.15) figure 75 . 8- lead lead frame chip scale package [ lfcsp_ w d] 3 mm 3 mm body, very very thin, dual lead (cp - 8 - 12) dimensions shown in millimeters
data sheet ada4528-1/ada4528-2 rev. d | page 25 of 28 2.44 2.34 2.24 top view 8 1 5 4 0.30 0.25 0.20 bottom view pin 1 index are a sea ting plane 0.80 0.75 0.70 1.70 1.60 1.50 0.203 ref 0.05 max 0.02 nom 0.50 bsc exposed pa d 3.10 3.00 sq 2.90 pin 1 indic at or (r 0.15) for proper connection of the exposed pad, refer to the pin configuration and function descriptions section of this data sheet. coplanarity 0.08 0.50 0.40 0.30 compliant to jedec standards mo-229-weed 1 1-28-2012-c 0.20 min figure 76 . 8 - lead lead frame chip scale package [lfcsp_wd] 3 mm 3 mm body, very very thin, dual lead (cp -8- 11) dimensions shown in millimeters ordering guide model 1 temperature range package description package option branding ada4528 -1 armz ? 40c to +125c 8- lead mini small outline package [msop] rm -8 a2r ada4528 - 1armz - r7 ? 40c to +125c 8- lead mini small outline package [msop] rm -8 a2r ada4528 - 1armz - rl ? 40c to +125c 8- lead mini small outline package [msop] rm -8 a2r ada4528 - 1acpz -r2 ? 40c to +125c 8- lead lead frame chip scale package [lfcsp_wd] cp -8- 12 a2r ada4528 - 1acpz -r7 ? 40c to +125c 8- lead lead frame chip scale packag e [lfcsp_wd] cp -8- 12 a2r ada4528 - 1acpz - rl ? 40c to +125c 8 - lead lead frame chip scale package [lfcsp_wd] cp - 8 - 12 a2r ada4528 -2 armz ? 40c to +125c 8- lead mini small outline package [msop] rm -8 a 32 ada4528 -2 armz - r7 ? 40c to +125c 8- lead mini small outline package [msop] rm -8 a 32 ada4528 -2 armz - rl ? 40c to +125c 8- lead mini small outline package [msop] rm -8 a 32 ada4528 - 2acpz -r7 ? 40c to +125c 8- lead lead frame chip scale package [lfcsp_wd] cp -8- 11 a32 ada4528 - 2acpz -rl ? 40c to +125c 8- lead lead fram e chip scale package [lfcsp_wd] cp -8- 11 a32 1 z = rohs compliant part.
ada4528- 1/ada4528 - 2 data sheet rev. d | page 26 of 28 notes
data sheet ada4528- 1/ada4528 - 2 rev. d | page 27 of 28 notes
ada4528- 1/ada4528 - 2 data sheet rev. d | page 28 of 28 notes ? 2011 C 2013 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d09437 - 0- 5/13(d)


▲Up To Search▲   

 
Price & Availability of ADA4528-2ARMZ-RL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X